Substrate scope and synthetic applications of the enantioselective reduction of α-alkyl-β-arylenones mediated by Old Yellow Enzymes.
نویسندگان
چکیده
The ene-reductases mediated bioreduction of a selection of open-chain α-alkyl-β-aryl enones afforded the corresponding saturated α-chiral ketones in high yield and optical purity in several cases. The stereo-electronic requirements of the reaction have been investigated, considering the nature and location of substituents on the aromatic ring as well as the steric hindrance at the α-position and adjacent to the carbonyl functionality. The general considerations drawn allow us to guide the design of α,β-unsaturated ketones to be employed as substrates of ene-reductases in future preparative applications. An interesting case of orthogonality between enzyme-based and substrate-based stereocontrol within the highly homologous ene-reductases from Saccharomyces species (OYE1-3) has been reported and rationalized with the help of computational docking studies. Furthermore, to demonstrate the synthetic versatility of the reaction, the key chiral precursors of biologically active compounds such as (2'R)-stenusines and (S)-iopanoic acid were obtained. The very robust protocol allowed us to run the reactions on preparative scale in quantitative yields, with a simple work-up and no chromatographic purification steps.
منابع مشابه
A Highly Diastereoselective and Enantioselective Phase-Transfer Catalyzed Epoxidation of β-Trifluoromethyl-β,β-disubstituted Enones with H2O2
Trifluoromethylated organic compounds, especially chiral quaternary alcohols bearing trifluoromethyl group are of important intermediates in drugs, agrochemicals and etc.An efficient epoxidation of β-CF3-β,β-disubstituted unsaturated ketones (6) has been developed with environmental benign hydrogen peroxide as the oxidant and F5-substituted chiral qua...
متن کاملRecombinant S. cerevisiae expressing Old Yellow Enzymes from non-conventional yeasts: an easy system for selective reduction of activated alkenes
BACKGROUND Old Yellow Enzymes (OYEs) are flavin-dependent enoate reductases (EC 1.6.99.1) that catalyze the stereoselective hydrogenation of electron-poor alkenes. Their ability to generate up to two stereocenters by the trans-hydrogenation of the C = C double bond is highly demanded in asymmetric synthesis. Isolated redox enzymes utilization require the addition of cofactors and systems for th...
متن کاملEnantioselective bifunctional iminophosphorane catalyzed sulfa-Michael addition of alkyl thiols to unactivated β-substituted-α,β-unsaturated esters.
The highly enantioselective sulfa-Michael addition of alkyl thiols to unactivated β-substituted-α,β-unsaturated esters catalyzed by a bifunctional iminophosphorane (BIMP) organocatalyst is described. The low acidity of the alkyl thiol pro-nucleophiles is overcome by the high Brønsted basicity of the catalyst and the chiral scaffold/thiourea hydrogen-bond donor moiety provides the required enant...
متن کاملCopper(II)-catalyzed enantioselective hydrosilylation of halo-substituted alkyl aryl and heteroaryl ketones: asymmetric synthesis of (R)-fluoxetine and (S)-duloxetine.
A set of reaction conditions has been established to facilitate the non-precious copper-catalyzed enantioselective hydrosilylation of a number of structurally diverse β-, γ- or ε-halo-substituted alkyl aryl ketones and α-, β- or γ-halo-substituted alkyl heteroaryl ketones under air to afford a broad spectrum of halo alcohols in high yields and good to excellent enantioselectivities (up to 99% e...
متن کاملEnzymatic diastereo- and enantioselective synthesis of α-alkyl-α,β-dihydroxyketones.
An enzymatic strategy for the preparation of optically pure α-alkyl-α,β-dihydroxyketones is reported. Homo- and cross-coupling reactions of α-diketones catalyzed by acetylacetoin synthase (AAS) produce a set of α-alkyl-α-hydroxy-β-diketones (30-60%, ee 67-90%), which in turn are reduced regio-, diastereo-, and enantioselectively to the corresponding chiral α-alkyl-α,β-dihydroxyketones (60-70%, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Organic & biomolecular chemistry
دوره 11 18 شماره
صفحات -
تاریخ انتشار 2013